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Abstract. In this paper we study the ground-state phase diagram of the one-dimensional half-
filled repulsive (U > 0) Hubbard model supplemented with the pair-hopping interaction (W ) (the
Penson–Kolb–Hubbard model) using the continuum-limit field theory approach. We compare
the low-energy properties of theU > 0 Hubbard model andW > 0 Penson–Kolb model.
We show that, despite similar excitation spectra, the character of instabilities in these models
is completely different. In contrast to the Hubbard model, in the case of the Penson–Kolb
model, the dynamical generation of a charge gap leads to the suppression of spin-density-wave
(SDW) fluctuations. The charge-density-wave fluctuations survive and coexist with bond-located
SDW (Bd-SDW) instabilities. TheBd-SDW corresponds to a magnetically ordered state with
staggered magnetization located on bonds between sites. The possibility of bond-located ordering
is connected with the site-off-diagonal nature of the pair-hopping interaction. In the case of PKH
the bond-ordered states exist at|W | > U/2. ForW > U/2 theBd-SDW is realized while for
W < −U/2 the dimerized phase is realized.

1. Introduction

Since the discovery of high-temperature superconductivity a great variety of different pairing
mechanisms has been proposed. Many of these proposals contain the concept of pairing in
real space as far as the ‘Cooper pairs’ observed in high-Tc materials are characterized by the
extremely small coherence lengths in marked contrast to traditional (BCS) superconductors.
The attractive (U < 0) Hubbard model

H = −t
∑
n,α

(c†n,αcn+1,α + c†n+1,αcn,α)+ U
∑
n

c
†
n,↑cn,↑c

†
n,↓cn,↓ (1)

was often considered to describe the evolution from the BCS-type pairing to the local pair
(composite boson) limit (see for a review see [1]). A rather different realization of a pairing
in real space is theη-pairing mechanism of superconductivity introduced by Yang [2] for the
Hubbard model. Yang discovered a class of eigenstates of the Hubbard Hamiltonian which
have the property of off-diagonal long-range order, which in turn implies the Meissner
effect and flux quantization [3–5], i.e. superconductivity. These eigenstates are constructed
in terms of doubly occupied sites (‘Cooper pairs’ of zero size) with momentumπ . Yang also
proved that these states cannot be ground states for the Hubbard model with finite interaction.
η-superconductivity is realized in the Hubbard model only at infinite on-site attraction [6].
Later several generalizations of the Hubbard model, showingη-superconductivity in the
ground state (for a finite on-site interaction) were proposed [7–11].
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Another model which captures the essential physics of both above-mentioned scenarios
for the realization of pairing in real space, is the Penson–Kolb (PK) model [12]. The
Hamiltonian of the PK model contains, in addition to the usual one-electron hopping term,
a term that hops singlet pairs of electrons from site to site and in the one-dimensional case
is given by

H = −t
∑
n,α

(c†n,αcn+1,α + c†n+1,αcn,α)+W
∑
n

(c
†
n,↑c

†
n,↓cn+1,↓cn+1,↑ + h.c.). (2)

In the case ofnegativeW the PK model describes a continuous evolution of the usual BCS-
type superconducting state at|W | � t into a local pair superconducting limit at|W | � t

[13]. In the case of largepositive-W (W > Wc ' 2t) the ground state of the PK model
is η-superconducting [14, 15]. The rich and unusual phase diagram of the PK model has
triggered considerable interest, of late, to models with pair-hopping interaction [13–21].

It is notable that the pair-hopping term (though introduced phenomenologically) and the
Hubbard term, could be obtained from the same general tight-binding Hamiltonian [22] by
approximating the two-particle coupling. Indeed the same matrix element of the electron–
electron interaction potentialV (r),

V (n,m, k, l) =
∫

dr dr ′ ρnl(r)ρmk(r ′)V (r − r ′) (3)

which gives rise to the on-site Hubbard interaction forn = m = k = l leads to the pair-
hopping amplitudeW for n = m andk = l = n±1. In equation (3),ρij denotes the matrix
element of the electron-density operator,ρ̂(r), in the Wannier representationρij (r) = 8∗i 8j .
Although originating from the same two-body potential the Hubbard and the pair-hopping
couplings represent different types of correlations in the electron system. If the Hubbard
term describes on-site correlations, the site-off-diagonal pair-hopping term describes part of
the so-called ‘bond-charge’ interaction [23]. To clarify similarities and differences between
these two sources of correlations the comparative study of the Hubbard and PK model is
very useful.

As it was shown by Affleck and Marston [13], the attractive (W < 0) PK model behaves
qualitatively like the attractive Hubbard model. For allW < 0 (and for arbitrary band-filling)
there is a gap in the spin excitation spectrum, the charge excitation spectrum is gapless and
the singlet superconducting (SS) instabilities are most divergent in the ground state. The
difference with theU < 0 Hubbard model occurs only in the case of the half-filled band.
At this particular band-filling the Hubbard model is characterized by the coexistence of
charge-density-wave (CDW) and SS instabilities in the ground state [24, 25].

The repulsive (W > 0) PK model exhibits a transition into theη-superconducting state at
W > Wc ' 2t [14, 15]. The transition is of first order (level crossing) and leads to a drastic
change in the structure of the ground state: after the transition the one-particle hopping term
is almost frozen out [15], the spin excitations are gapped, while the charge excitations are
gapless [17]. The critical valueWc weakly depends on the band-filling and varies between
Wc ' 1.8t at half-filling toWc ' 2t for two particles on the lattice. There is no similarity
with the repulsive Hubbard model. The site-off-diagonal nature of the pair-hopping term is
crucial in this case [15].

At 0 < W < Wc the PK model shares some common features with the repulsive
Hubbard model. Namely in the case of non-half-filled band the low-energy behaviour of
the PK and Hubbard models is qualitatively similar [13, 18, 15]. Moreover, in the case
of the half-filled band the excitation spectrum of the PK model and theU > 0 Hubbard
model is identical [13, 17]. However, at half-filling the symmetry of instabilities has been
the subject of some controversy. The real space renormalization group approach shows
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an enhancement of the CDW fluctuations [14], while studies within the Green function
formalism [18] show domination of the spin density-wave (SDW) instabilities.

To clarify the particularities appearing in the half-filled band case, in this paper we
investigate the weak-coupling ground-state phase diagram of the generalized (U − W )
Penson–Kolb–Hubbard (PKH) model using the continuum-limit approach and bosonization
technique. We compare the low-energy behaviour of theW > 0 PK model with the repulsive
Hubbard model. We show that at half-filling the site-off-diagonal nature of the pair-hopping
interaction manifests itself pronouncedly already in the weak-coupling limit. In contrast to
the Hubbard model, in the PK model generation of the charge gap leads to suppression of
the SDW fluctuations. The CDW fluctuations survive. Moreover, an instability with respect
to bond-located ordering appears. Namely, the bond-located spin-density-wave (Bd-SDW)
phase, with order parameter

OBd-SDW = (−1)n
∑
α

α(c†n,αcn+1,α + c†n+1,αcn,α) (4)

describing a staggered magnetization located on bonds between sites is one of the possible
ordered states of the half-filled PK model. The possibility of bond-located magnetic ordering
was not considered in previous studies and is directly connected with the site-off-diagonal
nature of the pair-hopping term. The very presence of the interaction coupled with on-bond
degrees of freedom leads to the peculiar ordering inside these degrees of freedom.

In the case of the PKH model the bond-ordered states exist at|W | > U/2. ForW > U/2
the low-energy properties of the PKH model are similar to theU = 0 case: coexistence
of the CDW andBd-SDW instabilities. This phase becomes unstable with respect to
transition intoη-superconducting phase with increasingW . ForW < 0 the line|W | = U/2
corresponds to a transition into the dimerized (Peierls) phase at|W | < U/2. Dimerized
phase becomes unstable with respect to transition into a singlet superconducting phase with
increasing|W |.

Our paper is organized as follows. In section 2 we will review the PK model and its
symmetries. In section 3 we construct the continuum-limit version of the PKH model and
perform a renormalization-group analysis of the corresponding field theory. In section 4
we study the large-scale behaviour of the various correlation functions and compare phase
diagrams ofU > 0 Hubbard model andW > 0 PK model. In section 5 the ground-state
phase diagram of the PKH model is presented and a summary of the results is given.

2. Review of the Penson–Kolb model and its symmetries

There are two important aspects distinguishing the PK model from the Hubbard model.
First is the symmetry of these models, second is the nonlocal character of the pair-hopping
interaction.

Let us first consider the symmetry aspect. The PK and Hubbard models are characterized
by the sameSU(2)-spin symmetry. The difference lies in the symmetry of the corresponding
charge sectors—SU(2) in the case of half-filled Hubbard model andU(1) in the case of
PK model [13]. This can be easily seen in the case of strong interactions.

It is well known that the repulsive Hubbard model atU � t is equivalent to the spin-1
2

Heisenberg model

H = J
∑
n

SnSn+1 (5)

whereJ = t2/U . A spin-down particle–hole transformationcn,↓ → (−1)nc†n,↓, changes the



10512 G I Japaridze and E M¨uller-Hartmann

sign ofU without affectingt and interchanges charge with spin operators

ρ(n) =
∑
n,α

c†n,αcn,α → c
†
n,↑cn,↑ − c†n,↓cn,↓ + 1= 2Sz(n)+ 1 (6)

cn,↓cn,↑ → (−1)nc†n,↓cn,↑ = (−1)nS+(n). (7)

This implies that both the spin and charge sectors of the half-filled Hubbard model are
governed by theSU(2) symmetry of the equivalent Heisenberg model.

On the other hand atW < 0, |W | � t the PK model is equivalent to the spin-1
2

XY model [12]. The correspondence with theXY model can be seen by making the
transformation

T +n = c†n,↑c†n,↓ (8)

T zn = (c†n,↑cn,↑ + c†n,↓cn,↓ − 1)/2. (9)

Then the Hamiltonian becomes

H = W
∑
n

(T +n T
−
n+1+ h.c.). (10)

Electrons only appear as singlet pairs on the same site, the interaction term simply acts as
a hopping term for these pairs. There is a gap in the spin excitation spectrum, the charge
excitations are gapless. This picture holds true forW →∞ or −∞ since theXY model is
invariant with respect to a change of sign of the coupling constant. Thus, in contrast to the
Hubbard model the charge sector of the PK model is governed by theU(1)-symmetry of the
equivalentXY chain. However, it is important to note thatW → −W is not a symmetry
of the PK model and therefore the ground-state phase diagram is genuinely different for
negative and positiveW cases.

Let us now clarify peculiarities arising from the site-off-diagonal nature of the pair-
hopping term. It is convenient to rewrite the corresponding interaction terms in momentum
space

Hint = 1

L

∑
k1,k2,k3

V (k1+ k2)c
†
↑(k1)c

†
↓(k2)c↓(k3)c↑(k1+ k2− k3) (11)

whereV (k1+ k2) = 2W cos(k1+ k2) in the case of PK andV (k1+ k2) = U in the case of
the Hubbard model.

In the case of weak interaction (U,W � t) only states near the two Fermi points
kF = ±π/2 are relevant. Therefore, the umklapp scattering withk1 ∼ k2 ∼ −k3 ∼ ±π/2
is the only relevant scattering process different for the Hubbard and the PK model.

In the case of attractive interaction(U,W < 0) the umklapp scattering is irrelevant. In
this case the difference in symmetry is crucial [13]. This difference determines a very subtle
(seen only in the second-order renormalization-group approximation) difference in scaling
properties of the Hubbard and PK models, which, however, leads to a basic difference in
the ground-state phase diagram. Due to theU(1) symmetry of the charge channel the SS
instability dominates in the ground state of the PK model for allW < 0 [13] while the
SU(2)

⊗
SU(2) symmetry of the half-filled Hubbard model leads to the co-dominance of

the CDW and SS correlations in the ground state atU < 0.
In contrast, in the case of repulsive interaction (U,W > 0) the umklapp scattering

is relevant. Similar to the Hubbard model, in the case of the PK model it leads to the
dynamical generation of a commensurability gap in the charge excitation spectrum at half-
filling [13]. However this is the only similarity. As we show below, the site-off-diagonal
nature of the pair-hopping term manifests itself pronouncedly in this case (via the opposite



Bond-located ordering in the 1D PKH model 10513

sign of the umklapp coupling constant) and leads to a completely different symmetry of
instabilities in PK and Hubbard models. This can be seen already within the first-order
renormalization-group analysis. Therefore below we will restrict ourselves to this accuracy.

3. Weak-coupling renormalization-group analysis

In what follows we will study the weak-coupling ground-state phase diagram of the PKH
model [16] given by the Hamiltonian

H = −t∗
∑
n,α

(: c†n,αcn+1,α + c†n+1,αcn,α :)+ U
∑
n

: c†n,↑cn,↑ :: c†n,↓cn,↓ :

+W
∑
n

(: c†n,↑cn+1,↑ :: c†n,↓cn+1,↓ : +h.c.). (12)

Here t∗ = t + W/π and :: denote normal ordering with respect to the ground state of
noninteracting electron gas. We will restrict ourselves by considering the half-filled band
case and repulsive on-site interaction (U > 0).

In the weak-coupling limit(U, |W | � t) the low-energy physics is controlled by states
near the two Fermi points±kF. After linearization of the spectrum around these points
we obtain two speciesψR,α(x) and ψL,α(x), which describe excitations with dispersion
relationsEp = ±vFp, where the momentump is measured from the corresponding Fermi
point andvF is the Fermi velocity.

The effective Hamiltonian describing the low-energy behaviour of the model (12) written
in terms of continuum fieldsψR,α(x) andψL,α(x) has the form

H = −ivF

∑
α

∫
dx [ψ†R,α∂xψR,α − ψ†L,α∂xψL,α]

+πvF

∫
dx

{
(−gcρR(x)ρL(x)− gsσR(x)σL(x))

+
∑
α

1
2g⊥(ψ

†
R,α(x)ψ

†
L,−α(x)ψR,−α(x)ψL,α(x)+ h.c.)

+
∑
α

1
2gu(ψ

†
R,α(x)ψ

†
R,−α(x)ψL,−α(x)ψL,α(x)+ h.c.)

}
. (13)

Here

ρR(L) = 1√
2

∑
α

ψ
†
R(L),α(x)ψR(L),α(x) (14)

σR(L) = 1√
2

∑
α

αψ
†
R(L),α(x)ψR(L),α(x) (15)

and the small dimensionless coupling constants are given by

gs = g⊥ = (U + 2W)/πvF (16)

gc = −(U + 2W)/πvF gu = (U − 2W)/πvF. (17)

In obtaining (13), terms corresponding to scattering processes in the vicinity of a Fermi
point which lead to a renormalization of the Fermi velocities in second order ing were
omitted. Neglecting these terms results in a complete decoupling of charge and spin
degrees of freedom. The most convenient way to analyse the model in this case is to
use the bosonization procedure and convert the continuum Hamiltonian (13) to a quantum
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theory of two independent Bose fieldsϕc(x) andϕs(x) corresponding to the charge and spin
degrees of freedom. The corresponding maping formulae are [26]

ψR,α → 1√
2πa0

exp
(

i
√
π/2[ϕc(x)+ ϕ̄c(x)+ α(ϕs(x)+ ϕ̄s(x))]

)
(18)

ψL,α → 1√
2πa0

exp
(
−i
√
π/2[ϕc(x)− ϕ̄c(x)+ α(ϕs(x)− ϕ̄s(x))]

)
. (19)

Here ∂xϕ̄c(s) = −Pc(s) wherePc(s)(x) is the momentum conjugate toϕc(s)(x) and a0 is a
cut-off parameter of the order of the lattice constant.

Using relations (18) and (19), after rescaling the fields and lengths the Hamiltonian (13)
acquires the following form

H = Hc +Hs (20)

Hc =
∫

dx

{
vc

2
[(∂xϕc)

2] + P 2
c (x)+

mc

πα2
0

cos(βcϕc(x))

}
(21)

Hs =
∫

dx

{
vs

2
[(∂xϕs)

2] + P 2
s (x)+

ms

πα2
0

cos(βsϕs(x))

}
(22)

where

mc = − 1

2π
gu β2

c = 8π(1+ 1
2gc) (23)

ms = 1

2π
g⊥ β2

s = 8π(1+ 1
2gs). (24)

The infrared behaviour of the sine-Gordon HamiltonianHc,s is described by the
corresponding pair of renormalization-group equations for the effective coupling constants
0i [27]

d0u/dL = −0c0u
d0c/dL = −02

u

(25)

d0⊥/dL = −0s · 0⊥
d0s/dL = −02

⊥
(26)

whereL = ln(a0) and 0i(0) = gi . Each pair of equations (25) and (26) describes the
Kosterlitz–Thouless transition [28] in charge and spin channels. Forgc > |gu| (gs > |g⊥|)
we have a weak coupling regime; the effective massMc(s) → 0, indicating the gapless
character of the corresponding charge (spin) excitations in this case. Forgc < |gu|
(gs < |g⊥|) the system scales into a strong coupling regime; depending on the sign of
the bare massmc(s), the effective massMc(s) → ±∞, which signals the crossover into a
strong coupling regime and indicates the dynamical generation of a commensurability gap
in the charge (spin) excitation spectrum. The fieldsϕc(ϕs) get ordered with the vacuum
expectation values [29]

〈ϕc(s)〉 = π

βc(s)
(mc(s) > 0) (27)

〈ϕc(s)〉 = 0 (mc(s) < 0). (28)

The ordering of these fields determines the symmetry properties of the possible ordered
ground states of the fermionic system.

Using equations (16), (17) and (23) one easily finds that at allU + 2W > 0 Ms → 0.
Therefore the spin excitation spectrum of the repulsive PK model (W > 0, U = 0) as
well as of the repulsive Hubbard model (U > 0,W = 0) are gapless. The spin excitation
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Figure 1. The renormalization-group flow diagram; the arrows denote the direction of flow with
increasing length scale. The black dots correspond to the starting points for theU > 0 Hubbard
model (A) and the PKH model at 0< W < U/2 (A1). The triangles correspond to the starting
points for theW > 0 PK model (B) and the PKH model atW > U/2 (B1).

spectrum is gapped atU + 2W < 0. In this sector theϕs field gets ordered with vacuum
expectation value〈ϕs〉 = 0.

On the other hand, at allU + 2W > 0 |Mc| → ∞ and there is a gap in the charge
excitation spectrum. However, depending on the bare value of the charge massmc (i.e.
umklapp term) the scaling trajectories stay in different sectors of the phase diagram (see
figure 1). At U > 2W (mc < 0) Mc → −∞ and theϕc field gets ordered with
vacuum expectation value〈ϕc〉 = 0. Thus in the case of the repulsive Hubbard model
(W = 0, U > 0) 〈ϕc〉 = 0. At 2W > U > 0 (mc > 0) Mc → ∞ and theϕc field gets
ordered with vacuum expectation value〈ϕc〉 = π/βc. Therefore in the case of the repulsive
PK model (U = 0,W > 0) 〈ϕc〉 = π/βc. As we show below this leads to essentially
different symmetries of instabilities in the ground state of the Hubbard and PK models.

4. Correlation functions

To clarify the symmetry properties of the ground states of the system in different sectors
we use, besides the usual order parameters describing the short wavelength fluctuations of
the site-located charge- and spin-density

OCDW = (−1)n
∑
α

c†n,αcn,α =
∑
α

(ψ
†
R,αψL,α + h.c.)

∼ sin( 1
2βcϕc) cos( 1

2βsϕs) (29)

Oz
SDW = (−1)n

∑
α

αc†n,αcn,α =
∑
α

α(ψ
†
R,αψL,α + h.c.)

∼ cos( 1
2βcϕc) sin( 1

2βsϕs) (30)
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Ox
SDW = (−1)n

∑
α

c†n,αcn,−α =
∑
α

(ψ
†
R,αψL,−α + ψ†L,αψR,−α)

∼ cos( 1
2βcϕc) cos( 1

2β̄s ϕ̄s) (31)

O
y

SDW = i(−1)n
∑
α

αc†n,αcn,−α = −i
∑
α

α(ψ
†
R,αψL,−α + ψ†L,αψR,−α)

∼ cos( 1
2βcϕc) sin( 1

2β̄s ϕ̄s) (32)

an additional set of order parameters describing the short wavelength fluctuations of the
bond-located charge- and spin-density [30]

OBd-CDW = (−1)n
∑
α

(c†n,αcn+1,α + c†n+1,αcn,α) = −i
∑
α

(ψ
†
R,αψL,α − h.c.)

∼ cos( 1
2βcϕc) cos( 1

2βsϕs) (33)

Oz
Bd-SDW = (−1)n

∑
α

α(c†n,αcn+1,α + c†n+1,αcn,α) = −i
∑
α

α(ψ
†
R,αψL,α − h.c.)

∼ sin( 1
2βcϕc) sin( 1

2βsϕs) (34)

Ox
Bd-SDW = (−1)n

∑
α

(c
†
i,αci+1,−α + h.c.) = i

∑
α

(ψ
†
R,αψL,−α − ψ†L,αψR,−α)

∼ sin( 1
2βcϕc) cos( 1

2β̄s ϕ̄s) (35)

O
y

Bd-SDW = i(−1)n
∑
α

α(c
†
i,αci+1,−α + h.c.) =

∑
α

α(ψ
†
R,αψL,−α − ψ†L,αψR,−α)

∼ sin( 1
2βcϕc) sin( 1

2β̄s ϕ̄s) (36)

whereβ̄s = 8π/βs
Using equations (29)–(36) and the vacuum values of the fieldϕρ andϕs one obtains (cf

[29]) the phase diagram of the model. Let us first consider the limiting cases.
The Hubbard model (W = 0, U > 0). The vacuum expectation value〈ϕc〉 = 0. Using

equations (29)–(36) one recovers the well-known phase diagram. The SDW andBd-CDW
instabilities survive. Due to the gapless character of spin excitations, the corresponding
correlations show a power-law decay at large distances

〈OBd-CDW(x)OBd-CDW(x
′)〉 ∼ |x − x ′|−1 (37)

〈O(j)

SDW(x)O
(j)

SDW(x
′)〉 ∼ |x − x ′|−1 j = x, y, z (38)

with the critical indices governed by theSU(2)-symmetry of the model. TheBd-CDW
correlations describe the Peierls instability in the system. Coexistence of the SDW and
Bd-CDW instabilities in the repulsive Hubbard model is the mechanism of the spin–Peierls
transition atU � t .

In the case of the PK model (U = 0) the vacuum expectation value〈ϕc〉 = π/βc. This
implies complete suppression of the SDW andBd-CDW instabilities. In this case the CDW
andBd-SDW correlations show an identical power-law decay at large distances

〈OCDW(x)OCDW(x
′)〉 ∼ |x − x ′|−1 (39)

〈O(j)

Bd-SDW(x)O
(j)

Bd-SDW(x
′)〉 ∼ |x − x ′|−1 j = x, y, z. (40)

Once again the critical indices are determined by theSU(2)-spin symmetry of the PK model.
As we see the symmetry of correlations in the half-filledW > 0 PK model is essentially

different from the half-filled repulsive Hubbard model. Besides the CDW-type instability
[14], an unusual magnetic instability (Bd-SDW) corresponding to a staggered magnetization
located on bonds between the sites is most divergent in the ground state of the PK model.
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Possibility forBd-SDW ordering is a direct consequence of the site-off-diagonal nature of
the pair-hopping interaction.

In the weak-coupling continuum limit Hamiltonian (13) the difference between the on-
site and pair-hopping interaction manifest itself only via the opposite sign of the umklapp
coupling constant. The chiral transformationψL,α → −iψL,α changes the sign of the
umklapp term, while leaving other couplings unchanged. As it follows from equations (29)–
(36) this transformation interchanges the on-site and on-bond order parameters. Therefore,
although after this transformation continuum-limit versions of the Hubbard and PK model
are equivalent withU → 2W , the character of instabilities is completely different.

5. Phase diagram of the Penson–Kolb–Hubbard model

On the basis of the results presented in the previous sections we can now discuss the ground-
state phase diagram of the half-filled PKH model. In the case ofW < 0 the model was
studied by Hui and Doniach [16] using exact diagonalization data for systems of up to 12
sites and renormalization-group analysis. Later Bhattacharyya and Roy [14] investigated the
ground-state phase diagram using the real-space renormalization-group method. Recently
the model was analysed within the Green function formalism by Belkasri and Buzatu [18].
In all the previous studies the possibility for the bond-located ordering was not considered.
Below we will sketch out the ground-state phase diagram focusing our attention on the new
ordered phases. Although our results are valid in the weak-coupling limit (U, |W | 6 t) we
believe that the new states will remain at (U, |W | > t).

The ground-state phase diagram consists of five sectors (see figure 2). AtU > 2|W |
(sector A) the on-site repulsion dominates: there is a gap in the charge excitation spectrum,
the spin excitation spectrum is gapless and the SDW andBd-CDW instabilities are most
divergent in the ground state. AtU = 2|W | the transition into a regime where the on-bond
correlations dominate takes place.

In the case ofW > 0 the transition lineU = 2W corresponds to a metallic state. After
the transition, atU < 2W (sector B) the excitation spectrum is similar to theU > 2W
case. There is a gap in the charge excitation spectrum, the spin excitation spectrum is

Figure 2. Phase diagram of the one-dimensional PKH model for half-filling. SDW: spin-
density-wave; CDW: charge-density-wave;Bd-CDW: dimerized phase;Bd-SDW bond-located
SDW phase;Bd-CDW LRO: dimerized phase with true long-range order;S-SC: singlet
superconducting phase;η-SC: local pair superconducting phase with pairs of centre-off-mass
momentumπ .
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gapless. However, in this phase the symmetry of instabilities is different. The CDW and
Bd-SDW instabilities are most divergent in the ground state. This phase remains in the
case of PK model (U = 0) atW < Wc = 1.8t where atW = Wc the transition into an
η-superconducting phase (sector C) takes place [14, 15]. ForU 6= 0 Wc increases linearly
with U [14, 31].

At W < 0 the situation is different. In this case atU < 2|W | (sector D) the spin
gap opens, theϕs field gets ordered with vacuum expectation value〈ϕs〉 = 0. The state is
characterized by the gapped charge and spin excitation spectrum. TheBd-CDW correlations
show a true long-range order. In this case the dimerized phase is realized. Note that this
transition into the dimerized state differs from the stardard CDW–SDW transition along
the U = 2V line in the extended Hubbard model with nearest-neighbourV repulsion
[32]. In the latter case the charge gap vanishes along theU = 2V in the case of weak
couplings. The Peierls phase becomes unstable with respect to transition into the singlet
superconducting phase atU = 0. However, this is an artefact of the approximation used.
Second-order renormalization-group studies show that the superconducting phase penetrates
into the region withU > 0 [16, 14] (sector E). In contrast to previous studies [16, 14, 18]
our results indicate that the dimerized state, but not the SDW or CDW phases, is unstable
with respect to transition into the SS phase with increasing|W |.

In summary, in this paper we presented the weak-coupling phase diagram for the
one-dimensional half-filled PKH model atU > 0 and arbitraryW . For W > 0 we
compared the low-energy behaviours of the repulsive Hubbard model(U > 0,W = 0)
and the repulsive PK model(U = 0,W > 0). We have shown that, despite the similar
excitation spectra, the character of instabilities in these models is completely different. If the
Hubbard model is characterized by the coexistence of SDW and Peierls instabilities, in the
W > 0 PK model CDW andBd-SDW instabilities are most divergent. TheBd-SDW is an
unconvential insulating magnetic phase, characterized by a gapless spin excitation spectrum
and a staggered magnetization located on bonds between sites. The possibility of bond-
located ordering results from the site-off-diagonal nature of the pair-hopping term and is a
special feature of the half-filled band case. The transition from the phase with dominating
on-site repulsion (SDW,Bd-CDW) into the phase with dominating pair-hopping interaction
takes place along the lineU = 2W . At U = 2W the PKH model shows metallic properties.
In the case ofW < 0, U < 2|W | the dimerized phase is realized. This phase becomes
unstable to transition into a singlet superconducting phase with increasing|W |.
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